The bispectral property of a \boldsymbol{q}-deformation of the Schur polynomials and the \boldsymbol{q}-KdV hierarchy

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 307217
(http://iopscience.iop.org/0305-4470/30/20/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.110
The article was downloaded on 02/06/2010 at 06:03

Please note that terms and conditions apply.

The bispectral property of a q-deformation of the Schur polynomials and the q-KdV hierarchy

Luc Haine \dagger and Plamen Iliev \ddagger
Department of Mathematics, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium

Received 2 May 1997

Abstract

We show that appropriate q-analogues of the Schur polynomials provide rational solutions of a q-deformation of the N th KdV hierarchy. This allows us to construct explicit examples of bispectral commutative rings of q-difference operators.

1. Introduction

Recently, Frenkel [8] has introduced q-deformations of the KdV hierarchy and related soliton equations. His motivation was to elucidate the q-version of the, by now well known, connection between the classical W-algebra of $s l(N)$ and the bi-Hamiltonian structure of the N th Korteweg-de Vries (KdV) hierarchy, see also [9]. Incidentally he raised the interesting open problem of finding explicit solutions of the q-deformed hierarchies.

In [11] Grünbaum and Haine have unearthed another potential area of application of q deformations of soliton equations in the context of an extension of the classical orthogonal polynomials. Following Andrews and Askey [2], a family of orthogonal polynomials is called classical when they are eigenfunctions of a second-order q-difference operator, in addition to fulfilling the three-term recursion relation which is satisfied by any family of orthogonal polynomials. Classical orthogonal polynomials thus provide one of the earliest sources of 'bispectral situations'. In [11] all doubly infinite tridiagonal matrices were determined for which some families of eigenfunctions are also eigenfunctions of a secondorder q-difference operator. The solution is described in terms of an arbitrary solution of a q-analogue of Gauss' hypergeometric equation depending on five free parameters and extends the four-dimensional family of solutions given by the well known Askey-Wilson polynomials [3]. Some further examples involving higher order recursion relations and q-difference equations were obtained in $[10,12]$ by application of the (matrix) Darboux transformation. In addition some evidence was presented that this 'difference, q-difference' bispectral problem is intimately related with some q-deformation of the Toda lattice hierarchy and its Virasoro symmetries, although the precise connection remains to be worked out.

The aim of this paper is to initiate the study of a (perhaps simpler) ' q-difference, q difference' version of the bispectral problem and to connect it with a q-deformation of the N th KdV hierarchy. Precisely, we show that q-analogues of the Schur polynomials solve the

[^0]q-deformed N th KdV hierarchy (for an appropriate choice of N) and that the corresponding wave functions are eigenfunctions of a commutative ring of q-difference operators in the spectral parameter. This extends to the case $q \neq 1$ results of $[1,15,7,17,18]$. As in the case $q=1$, a suitable adaptation of the Darboux transformation will play a crucial role in establishing these results. For $q=1$, as was first shown in [7], it is well known that the Schur polynomials which solve the KdV hierarchy (corresponding to $N=2$) provide the complete list of all rank-1 bispectral Schrödinger operators. However, for $N>2$, as shown by Wilson [17], these solutions form a rather small subset among all rank-1 bispectral commutative rings of differential operators. The full set of solutions turns out to be parametrized by the so called adelic Grassmannian. We defer to a further work, a thorough study of a q-analogue of Wilson's adelic Grassmannian.

2. A \boldsymbol{q}-deformation of the N th $K d V$ hierarchy

The q-derivative operator D_{q} acting on functions of x is defined by

$$
\begin{equation*}
\left(D_{q} f\right)(x)=\frac{f(q x)-f(x)}{(q-1) x} \tag{2.1}
\end{equation*}
$$

We shall also use the operator

$$
\begin{equation*}
(D f)(x)=f(q x) \tag{2.2}
\end{equation*}
$$

and its powers

$$
\begin{equation*}
\left(D^{k} f\right)(x)=f\left(q^{k} x\right) \quad k \in \mathbb{Z} \tag{2.3}
\end{equation*}
$$

Our definition of the q-deformed N th KdV hierarchy will be slightly different from the one given in [8]. It has the advantage that it will obviously converge to the standard N th KdV hierarchy when $q \rightarrow 1$. We consider q-difference operators of order N of the form

$$
\begin{gather*}
L=D_{q}^{N}+(q-1) x\left(\sum_{j=0}^{N-2}(-1)^{j}(q-1)^{j} x^{j} u_{j+2}(x)\right) D_{q}^{N-1}+u_{2}(x) D_{q}^{N-2}+\cdots \\
+u_{N-1}(x) D_{q}+u_{N}(x) \tag{2.4}
\end{gather*}
$$

or, equivalently, in D notation:

$$
\begin{equation*}
L=\frac{1}{q^{\frac{N(N-1)}{2}}(q-1)^{N} x^{N}}\left(D^{N}-v_{1}(x) D^{N-1}+\cdots+(-1)^{N-1} v_{N-1}(x) D+(-1)^{N} q^{\frac{N(N-1)}{2}}\right) \tag{2.5}
\end{equation*}
$$

The N th q-deformed KdV hierarchy is defined by the Lax equations

$$
\begin{equation*}
\frac{\partial L}{\partial t_{j}}=\left[\left(L^{j / N}\right)_{+}, L\right] \quad j=1,2,3, \ldots \tag{2.6}
\end{equation*}
$$

where $\left(L^{j / N}\right)_{+}$denotes the positive part (including D^{0}) of the 'pseudo-difference' operator $L^{j / N}$.

When $q=1$, the N th root of L is a pseudo-differential operator with coefficients in the ring $\mathbb{C}\left[\mathrm{d}^{k} / \mathrm{d} x^{k} u_{i}\right]_{i=2, \ldots, N ; k \geqslant 0}$. When $q \neq 1$, one must be careful with the definition of $L^{1 / N}$. To explain this, let us try to find

$$
Q:=L^{1 / N}=\frac{1}{(q-1) x}\left(D+a_{0}(x)+a_{1}(x) D^{-1}+a_{2}(x) D^{-2}+\cdots\right)
$$

so that $Q^{N}=L$. A short computation gives that

$$
\begin{aligned}
Q^{N}= & \frac{1}{q^{\frac{N(N-1)}{2}}(q-1)^{N} x^{N}}\left[D^{N}+\left(\sum_{j=1}^{N} q^{j-1} D^{N-j} a_{0}\right) D^{N-1}+\cdots\right. \\
& \left.+\left(\sum_{j=1}^{N} q^{k(j-1)} D^{N-j} a_{k-1}+\text { terms involving } a_{0}, a_{1}, \ldots, a_{k-2}\right) D^{N-k}+\cdots\right]
\end{aligned}
$$

Thus $a_{0}(x), a_{1}(x), a_{2}(x), \ldots$ belong to a ring $R_{q, N}$ which can be defined as follows. Let $R_{q, N}^{(0)}=\mathbb{C}\left[v_{i}\left(q^{k} x\right)\right]_{i=1, \ldots, N-1 ; k \in \mathbb{Z}}$. Adjoin to $R_{q, N}^{(0)}$ all the solutions of

$$
\begin{equation*}
\left(D^{N-1}+q D^{N-2}+q^{2} D^{N-3}+\cdots+q^{N-1}\right) a_{0}(x)=r(x) \tag{2.7}
\end{equation*}
$$

for all $r(x) \in R_{q, N}^{(0)}$. This gives us a ring $R_{q, N}^{(1)}$. Then we adjoin to $R_{q, N}^{(1)}$ all the solutions of $\left(D^{N-1}+q^{2} D^{N-2}+q^{4} D^{N-3}+\cdots+q^{2(N-1)}\right) a_{1}(x)=r(x)$, for all $r(x) \in R_{q, N}^{(1)}$, etc. The inductive limit of the rings $R_{q, N}^{(i)}$, which are obtained in this way, is the ring $R_{q, N}$. For instance the above equations can always be uniquely (formally) solved if we take the coefficients of $L v_{i}(x)$ to be formal Laurent series in x. We refer the reader to [8] for details as well as for a description of the bi-Hamiltonian structure of the deformed hierarchy.

One crucial difference between the q-deformed hierarchy (2.6) and the standard one is that the first $q-\mathrm{KdV}$ flow is no longer a translation in x. It is given by

$$
\begin{equation*}
\frac{\partial L}{\partial t_{1}}=\left[D_{q}+\frac{a_{0}(x)+1}{(q-1) x}, L\right] \tag{2.8}
\end{equation*}
$$

where $a_{0}(x)$ satisfies (2.7) with $r(x)=-v_{1}(x)$.

3. q-analogues of the Schur polynomials solving q-KdV

We shall now produce true (non-formal) solutions of (2.6) by means of the Darboux transformation applied to D_{q}^{N}.

The q-exponential function is defined by

$$
\begin{equation*}
\exp _{q}(x)=\sum_{k=0}^{\infty} \frac{(1-q)^{k} x^{k}}{(q ; q)_{k}} \tag{3.1}
\end{equation*}
$$

where $(a ; q)_{k}$ denotes the standard q-shifted factorial

$$
(a ; q)_{0}=1 \quad(a ; q)_{k}=(1-a)(1-a q)\left(1-a q^{2}\right) \ldots\left(1-a q^{k-1}\right) \quad k \geqslant 1
$$

We introduce the elementary q-Schur polynomials $S_{k}\left(x ; t_{1}, t_{2}, \ldots\right)$ by the generating function

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}} S_{k}\left(x ; t_{1}, t_{2}, \ldots\right) z^{k}=\exp _{q}(x z) \exp \left(\sum_{k=1}^{\infty} t_{k} z^{k}\right) \tag{3.2}
\end{equation*}
$$

Thus

$$
\begin{aligned}
& S_{k}=0 \quad \text { for } k<0 \quad S_{0}=1 \quad S_{1}=x+t_{1} \\
& S_{2}=\frac{q-1}{q^{2}-1} x^{2}+t_{1} x+\frac{t_{1}^{2}}{2}+t_{2}, \text { etc. }
\end{aligned}
$$

To each partition $\lambda=\left\{\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}>0\right\}$ formed with a non-increasing finite sequence of positive integers, we associate q-Schur polynomials $S_{\lambda}\left(x ; t_{1}, t_{2}, \ldots\right)$ via the usual $n \times n$ determinant

$$
\begin{equation*}
S_{\lambda}\left(x ; t_{1}, t_{2}, \ldots\right)=\operatorname{det}\left(S_{\lambda_{i}+j-i}\left(x ; t_{1}, t_{2}, \ldots\right)\right) \tag{3.3}
\end{equation*}
$$

For instance

$$
\begin{equation*}
S_{2,1}\left(x ; t_{1}, t_{2}, t_{3}\right)=q \frac{q-1}{q^{3}-1} x^{3}+t_{1} x^{2}+t_{1}^{2} x+\frac{t_{1}^{3}}{3}-t_{3} . \tag{3.4}
\end{equation*}
$$

By definition, when $q \rightarrow 1$, these polynomials depend only on $x+t_{1}$ and we can put $x=0$, which agrees with the standard definition of the Schur polynomials. Denoting for a moment the standard Schur polynomials by $S_{\lambda}\left(t_{1}, t_{2}, \ldots\right)$ and their deformed version by $S_{\lambda, q}\left(x ; t_{1}, t_{2}, \ldots\right)$, since

$$
\begin{equation*}
\exp _{q}(x z)=\exp \left(\sum_{k=1}^{\infty} \frac{(1-q)^{k}}{k\left(1-q^{k}\right)} x^{k} z^{k}\right) \tag{3.5}
\end{equation*}
$$

we obtain immediately that
$S_{\lambda, q}\left(x ; t_{1}, t_{2}, t_{3}, \ldots\right)=S_{\lambda}\left(t_{1}+x, t_{2}+\frac{(1-q)^{2}}{2\left(1-q^{2}\right)} x^{2}, t_{3}+\frac{(1-q)^{3}}{3\left(1-q^{3}\right)} x^{3}, \ldots\right)$
an observation that we shall exploit soon!
We define the q-Wronskian of functions f_{1}, \ldots, f_{n} of x by

$$
\begin{equation*}
W_{q}\left(f_{1}, \ldots, f_{n}\right)=\operatorname{det}\left(D_{q}^{i-1} f_{j}\right)_{1 \leqslant i, j \leqslant n} . \tag{3.7}
\end{equation*}
$$

When f_{1}, \ldots, f_{n} are also functions of t_{1} we shall use the notation

$$
\begin{equation*}
W_{t_{1}}\left(f_{1}, \ldots, f_{n}\right)=\operatorname{det}\left(\left(\frac{\partial}{\partial t_{1}}\right)^{i-1} f_{j}\right)_{1 \leqslant i, j \leqslant n} \tag{3.8}
\end{equation*}
$$

to denote the usual Wronskian built with $\partial / \partial t_{1}$. It is clear from the definition (3.2) of the elementary Schur polynomials that

$$
\begin{equation*}
D_{q} S_{k}=\frac{\partial}{\partial t_{1}} S_{k}=S_{k-1} \tag{3.9}
\end{equation*}
$$

and thus, for any partition $\lambda=\left\{\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}>0\right\}$, we have that

$$
\begin{equation*}
S_{\lambda}=W_{q}\left(S_{\ell_{1}}, S_{\ell_{2}}, \ldots, S_{\ell_{n}}\right)=W_{t_{1}}\left(S_{\ell_{1}}, S_{\ell_{2}}, \ldots, S_{\ell_{n}}\right) \tag{3.10}
\end{equation*}
$$

with
$\ell_{1}=\lambda_{n}<\ell_{2}=\lambda_{n-1}+1<\ell_{3}=\lambda_{n-2}+2<\cdots<\ell_{n}=\lambda_{1}+n-1$.
Let $\left\{k_{1}, \ldots, k_{r}\right\}=\left\{0,1,2, \ldots, \ell_{n}\right\} \backslash\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{n}\right\}$, with $r=\ell_{n}+1-n$. Since the functions $S_{0}, S_{1}, S_{2}, \ldots, S_{\ell_{n}}$ span the kernel of $D_{q}^{\ell_{n}+1}$, we can factorize

$$
\begin{equation*}
D_{q}^{\ell_{n}+1}=Q P \tag{3.12}
\end{equation*}
$$

as a product of two monic q-difference operators $P=D_{q}^{n}+($ lower $)$ and $Q=D_{q}^{r}+($ lower $)$, with

$$
\begin{equation*}
P f=\frac{W_{q}\left(S_{\ell_{1}}, S_{\ell_{2}}, \ldots, S_{\ell_{n}}, f\right)}{W_{q}\left(S_{\ell_{1}}, S_{\ell_{2}}, \ldots, S_{\ell_{n}}\right)} \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
Q f=\frac{W_{q}\left(P\left(S_{k_{1}}\right), P\left(S_{k_{2}}\right), \ldots, P\left(S_{k_{r}}\right), f\right)}{W_{q}\left(P\left(S_{k_{1}}\right), P\left(S_{k_{2}}\right), \ldots, P\left(S_{k_{r}}\right)\right)} \tag{3.14}
\end{equation*}
$$

where f denotes an arbitrary function of x. In the following, we shall often use the notation

$$
\begin{equation*}
\tau(x, t):=W_{q}\left(S_{\ell_{1}}, S_{\ell_{2}}, \ldots, S_{\ell_{n}}\right) \tag{3.15}
\end{equation*}
$$

with $t=\left(t_{1}, t_{2}, \ldots\right)$, anticipating the result that this Wronskian is indeed a 'tau-function' of the q-deformed N th KdV hierarchy, for an appropriate choice of N. We can now state

Theorem 3.1. For any partition $\lambda=\left\{\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}>0\right\}$, let $N=\lambda_{1}+n$ and let P, Q be the q-difference operators defined in (3.13) and (3.14) so that $D_{q}^{N}=Q P$. Then, the operator

$$
\begin{equation*}
L=P Q \tag{3.16}
\end{equation*}
$$

solves the q-deformed N th KdV hierarchy (2.6).
Proof. Writing $L P=P D_{q}^{N}$ in ' D-notation' (2.3), one sees immediately that the coefficient of D^{0} in L has to be as in (2.5) or, equivalently, that L has the form given in (2.4). Since $D_{q}^{N} \exp _{q}(x z)=z^{N} \exp _{q}(x z)$, the 'wave function'

$$
\begin{equation*}
\Psi=\frac{1}{z^{n}} P\left(\exp _{q}(x z) \exp \left(\sum_{k=1}^{\infty} t_{k} z^{k}\right)\right) \tag{3.17}
\end{equation*}
$$

obviously satisfies

$$
\begin{equation*}
L \Psi=z^{N} \Psi \tag{3.18}
\end{equation*}
$$

Let us denote by $\Psi_{q=1}\left(t_{1}, t_{2}, \ldots\right)$ the wave function of the standard N th KdV hierarchy corresponding to the usual Schur polynomial $S_{\lambda}\left(t_{1}, t_{2}, \ldots\right)$ with $q=1$. It is given by the same formula as in (3.17) with $x=0$, except that in the definition (3.13) of P, q is replaced by t_{1} and f is a function of t_{1}, with $W_{t_{1}}$ the usual Wronskian (3.8). This remark combined with (3.5), (3.6), (3.9) and the definition (3.17) of Ψ shows that

$$
\Psi=\Psi_{q=1}\left(t_{1}+x, t_{2}+\frac{(1-q)^{2}}{2\left(1-q^{2}\right)} x^{2}, t_{3}+\frac{(1-q)^{3}}{3\left(1-q^{3}\right)} x^{3}, \ldots\right) .
$$

Thus, by the classical result that the Schur polynomials with $q=1$ are tau-functions of the KP hierarchy [15] (see also [16]), there exist differential operators $A_{j}\left(\partial / \partial t_{1}\right)$ in $\partial / \partial t_{1}$ so that

$$
\begin{equation*}
\frac{\partial \Psi}{\partial t_{j}}=A_{j}\left(\partial / \partial t_{1}\right) \Psi \quad j=2,3, \ldots \tag{3.19}
\end{equation*}
$$

If we could establish that

$$
\begin{equation*}
\frac{\partial \Psi}{\partial t_{1}}=\left(D_{q}+\frac{\partial}{\partial t_{1}} \log \frac{\tau(q x, t)}{\tau(x, t)}\right) \Psi \tag{3.20}
\end{equation*}
$$

with $\tau(x, t)$ as in (3.15), we could re-express the $\partial / \partial t_{1}$-derivatives in (3.19) in terms of D_{q}-derivatives, proving thus the existence of q-difference operators $B_{j}\left(D_{q}\right)$ so that

$$
\begin{equation*}
\frac{\partial \Psi}{\partial t_{j}}=B_{j}\left(D_{q}\right) \Psi \quad j=2,3, \ldots \tag{3.21}
\end{equation*}
$$

It then follows immediately from (3.18), (3.20) and (3.21), using standard arguments, that L solves the q-deformed N th KdV hierarchy (2.6).

It remains to establish (3.20). Substituting (3.2) into the definition (3.17) of Ψ gives

$$
\begin{equation*}
\Psi=\sum_{k=0}^{\infty} z^{k-n} \frac{W_{q}\left(S_{\ell_{1}}, S_{\ell_{2}}, \ldots, S_{\ell_{n}}, S_{k}\right)}{W_{q}\left(S_{\ell_{1}}, S_{\ell_{2}}, \ldots, S_{\ell_{n}}\right)} \tag{3.22}
\end{equation*}
$$

with $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$ as in (3.11). Let us denote by $W_{\lambda, k}(x, t)$ the Wronskian $W_{q}\left(S_{\ell_{1}}, S_{\ell_{2}}, \ldots, S_{\ell_{n}}, S_{k}\right)=W_{t_{1}}\left(S_{\ell_{1}}, S_{\ell_{2}}, \ldots, S_{\ell_{n}}, S_{k}\right)$. Recalling the definition of $\tau(x, t)$ in (3.15), after plugging (3.22) into (3.20), the validity of this identity amounts to checking that

$$
\begin{equation*}
W_{q}\left(\tau(x, t), W_{\lambda, k}(x, t)\right)=W_{t_{1}}\left(\tau(q x, t), W_{\lambda, k}(x, t)\right) \tag{3.23}
\end{equation*}
$$

with W_{q} and $W_{t_{1}}$ as in (3.7) and (3.8). One can think of this identity as an identity between two differential operators in $\partial / \partial t_{1}$ of order $n+1$ acting on the polynomials S_{k}. Thus, if we can show that the coefficients of $\left(\partial / \partial t_{1}\right)^{n+1}$ and $\left(\partial / \partial t_{1}\right)^{n}$ are the same on both sides of (3.23), since the identity is automatically satisfied for $k=\ell_{1}, \ell_{2}, \ldots, \ell_{n}$, it will be identically satisfied. One computes easily that both the left-hand side and the right-hand side of (3.23), when expanded as differential operators in $\partial / \partial t_{1}$ acting on S_{k}, are given by
$\tau(q x, t) \tau(x, t)\left(\frac{\partial}{\partial t_{1}}\right)^{n+1} S_{k}-\tau(x, t) \frac{\partial}{\partial t_{1}} \tau(q x, t)\left(\frac{\partial}{\partial t_{1}}\right)^{n} S_{k}+$ (lower order terms)
which establishes (3.23) and concludes the proof of the theorem.
As in the case $q=1$, for special choices of the partition λ, it may happen that L in (3.16) is a power of some q-difference operator. For instance, the well known 'staircase choice' $\lambda=\left\{\lambda_{1}=n>\lambda_{2}=n-1>\lambda_{3}=n-2>\cdots>\lambda_{n}=1\right\}$, corresponding to $\ell_{1}=1<\ell_{2}=3<\ell_{3}=5<\cdots<\ell_{n}=2 n-1$ in (3.11), leads to an operator L such that $L=\tilde{L}^{n}$, with

$$
\begin{equation*}
\tilde{L}=D_{q}^{2}+(q-1) x u(x, t) D_{q}+u(x, t) \tag{3.24}
\end{equation*}
$$

a solution of the q-analogue of the KdV hierarchy itself, corresponding to $N=2$. Moreover, the celebrated formula expressing $u(x, t)$ in terms of the tau-function admits the following q-analogue

$$
\begin{equation*}
u(x, t)=D_{q} \frac{\partial}{\partial t_{1}} \log \tau(x, t) \tau(q x, t) \tag{3.25}
\end{equation*}
$$

with $\tau(x, t)=S_{n, n-1, n-2, \ldots, 1}\left(x ; t_{1}, t_{2}, \ldots\right)$ and D_{q} the standard q-derivative operator introduced in (2.1). To see this, observe that since

$$
D_{q}^{2} S_{\ell_{k}}=D_{q}^{2} S_{2 k-1}=S_{2 k-3}=S_{\ell_{k-1}} \quad 1 \leqslant k \leqslant n
$$

by the definition of P (3.13), we have that ker $P \subset \operatorname{ker} P D_{q}^{2}$ and thus

$$
\begin{equation*}
P D_{q}^{2}=\tilde{L} P \tag{3.26}
\end{equation*}
$$

with \tilde{L} a second-order q-difference operator as in (3.24). Hence,

$$
\tilde{L}^{n}=P D_{q}^{2 n} P^{-1}=P(Q P) P^{-1}=P Q=L
$$

To check formula (3.25), we equate the coefficients of D_{q}^{n+1} in (3.26), which gives

$$
\begin{equation*}
b(x)=(q-1) x u(x)+b\left(q^{2} x\right) \tag{3.27}
\end{equation*}
$$

with $b(x)$ the coefficient of D_{q}^{n-1} in P. Now, from the definition of P (3.13) and by using (3.9), (3.10) and (3.15), one easily shows that

$$
\begin{aligned}
b(x) & =-\frac{\partial}{\partial t_{1}} W_{t_{1}}\left(S_{\ell_{1}}, \ldots, S_{\ell_{n}}\right) / W_{q}\left(S_{\ell_{1}}, \ldots, S_{\ell_{n}}\right) \\
& =-\frac{\partial}{\partial t_{1}} \log \tau(x, t)
\end{aligned}
$$

which, using (3.27), gives (3.25).

4. Bispectral property of the q-Schur polynomials

Our proof of the bispectral property of the q-Schur polynomials will be based on a q-version of a very useful lemma due to Reach [14]. This lemma was used in [18] to prove that the classical Schur polynomials are bispectral. Compared with the more recent developments on the bispectral problem in $[4,5,13]$, based on Wilson's idea of a bispectral involution [17], this lemma has the advantage of producing explicit formulae for a whole commutative ring of bispectral operators. At the end of the section, we shall connect this method with the more recent idea of the bispectral involution.

Lemma 4.1. Let $f_{0}, f_{1}, \ldots, f_{n+1}$ be functions of x. Define

$$
\begin{equation*}
F(x)=\sum_{k=1}^{n+1}(-1)^{n+1+k} f_{k}(x) \int f_{0}(x) W_{q}\left(f_{1}, \ldots, \hat{f}_{k}, \ldots, f_{n+1}\right) \mathrm{d}_{q} x \tag{4.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
W_{q}\left(f_{1}, \ldots, f_{n}, F\right)=\theta(x) W_{q}\left(f_{1}, \ldots, f_{n+1}\right) \tag{4.2}
\end{equation*}
$$

with

$$
\begin{equation*}
\theta(x)=\left(\int f_{0}(x) W_{q}\left(f_{1}, \ldots, f_{n}\right) \mathrm{d}_{q} x\right)_{\mid x q} \tag{4.3}
\end{equation*}
$$

Here $\int \mathrm{d}_{q} x$ denotes the standard q-integral.
Proof. Expanding with respect to the last row the identity

$$
\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n+1} \\
D_{q} f_{1} & D_{q} f_{2} & \cdots & D_{q} f_{n+1} \\
\vdots & \vdots & & \vdots \\
D_{q}^{n-1} f_{1} & D_{q}^{n-1} f_{2} & \cdots & D_{q}^{n-1} f_{n+1} \\
f_{1}\left(q^{s} x\right) & f_{2}\left(q^{s} x\right) & \cdots & f_{n+1}\left(q^{s} x\right)
\end{array}\right|=0
$$

for $s=0,1, \ldots, n-1$, gives

$$
\begin{equation*}
\sum_{k=1}^{n+1}(-1)^{n+1+k} f_{k}\left(q^{s} x\right) W_{q}\left(f_{1}, \ldots, \hat{f}_{k}, \ldots, f_{n+1}\right)=0 \tag{4.4}
\end{equation*}
$$

We now compute $D_{q} F, D_{q}^{2} F, \ldots$.. We have

$$
\begin{aligned}
& D_{q} F=\sum_{k=1}^{n+1}(-1)^{n+1+k} f_{k}(q x) f_{0}(x) W_{q}\left(f_{1}, \ldots, \hat{f}_{k}, \ldots, f_{n+1}\right) \\
&+\sum_{k=1}^{n+1}(-1)^{n+1+k} D_{q} f_{k} \int f_{0}(x) W_{q}\left(f_{1}, \ldots, \hat{f}_{k}, \ldots, f_{n+1}\right) \mathrm{d}_{q} x
\end{aligned}
$$

The first term is zero by (4.4) with $s=1$. Continuing the process inductively and taking appropriate linear combinations of the identities (4.4), we get that

$$
\begin{gather*}
D_{q}^{j} F=\sum_{k=1}^{n+1}(-1)^{n+1+k} D_{q}^{j} f_{k} \int f_{0}(x) W_{q}\left(f_{1}, \ldots, \hat{f}_{k}, \ldots, f_{n+1}\right) \mathrm{d}_{q} x \\
\quad \text { for } j=1,2, \ldots, n-1 \tag{4.5}
\end{gather*}
$$

This gives then that

$$
\begin{align*}
& D_{q}^{n} F=\sum_{k=1}^{n+1}(-1)^{n+1+k}\left(D_{q}^{n-1} f_{k}\right)(q x) f_{0}(x) W_{q}\left(f_{1}, \ldots, \hat{f}_{k}, \ldots, f_{n+1}\right) \\
&+\sum_{k=1}^{n+1}(-1)^{n+1+k} D_{q}^{n} f_{k} \int f_{0}(x) W_{q}\left(f_{1}, \ldots, \hat{f}_{k}, \ldots, f_{n+1}\right) \mathrm{d}_{q} x . \tag{4.6}
\end{align*}
$$

Note that now (and this is the main difference with the case $q=1$) the first term is non-zero, but it would be zero if instead of $\left(D_{q}^{n-1} f_{k}\right)(q x)$ we had $\left(D_{q}^{n-1} f_{k}\right)(x)$. Thus we can rewrite $D_{q}^{n} F$ as

$$
\begin{align*}
D_{q}^{n} F=(q-1) x & \sum_{k=1}^{n+1}(-1)^{n+1+k}\left(D_{q}^{n} f_{k}\right)(x) f_{0}(x) W_{q}\left(f_{1}, \ldots, \hat{f}_{k}, \ldots, f_{n+1}\right) \\
& \quad+\text { same second term as in }(4.6) \\
= & (q-1) x f_{0}(x) W_{q}\left(f_{1}, \ldots, f_{n+1}\right) \\
& +\sum_{k=1}^{n+1}(-1)^{n+1+k} D_{q}^{n} f_{k} \int f_{0}(x) W_{q}\left(f_{1}, \ldots, \hat{f}_{k}, \ldots, f_{n+1}\right) \mathrm{d}_{q} x . \tag{4.7}
\end{align*}
$$

Putting (4.1), (4.5) and (4.7) into $W_{q}\left(f_{1}, \ldots, f_{n}, F\right)$, most of the terms disappear by column elimination and we obtain

$$
\begin{aligned}
W_{q}\left(f_{1}, \ldots,\right. & \left.f_{n}, F\right)=W_{q}\left(f_{1}, \ldots, f_{n+1}\right)\left[\int f_{0}(x) W_{q}\left(f_{1}, \ldots, f_{n}\right) \mathrm{d}_{q} x\right. \\
& \left.+(q-1) x f_{0}(x) W_{q}\left(f_{1}, \ldots, f_{n}\right)\right] \\
= & \theta(x) W_{q}\left(f_{1}, \ldots, f_{n+1}\right)
\end{aligned}
$$

with $\theta(x)$ as in (4.3), which proves the lemma.
The next theorem expresses the bispectral property of the q-analogues of the Schur polynomials.

Theorem 4.2. Let $\lambda=\left\{\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}>0\right\}$ be a partition and let $\tau(x, t)=$ $S_{\lambda}\left(x ; t_{1}, t_{2}, \ldots\right)$ be the associated q-Schur polynomial. Then the corresponding solution L of the q-deformed N th KdV hierarchy built in theorem 3.1 is bispectral. Precisely, the function

$$
\begin{equation*}
\tilde{\Psi}=P\left(\frac{\exp _{q}(x z)}{z^{n}}\right)=\exp \left(-\sum_{k=1}^{\infty} t_{k} z^{k}\right) \Psi \tag{4.8}
\end{equation*}
$$

with P and Ψ as in (3.13) and (3.17), satisfies

$$
L \tilde{\Psi}=z^{N} \tilde{\Psi}
$$

and, for any polynomial $\theta(x)$ such that $D_{q} \theta(x)$ is divisible by $\tau(q x, t)$, there exists a q-difference operator in $z, B\left(z, D_{q, z}\right)$ independent of x such that

$$
B\left(z, D_{q, z}\right) \tilde{\Psi}=\theta(x) \tilde{\Psi}
$$

with $D_{q, z}$ the standard q-derivative operator acting on functions of z defined by $\left(D_{q, z} f\right)(z)=(f(q z)-f(z)) /(q-1) z$.

Proof. By q-integration by parts, for any polynomial $r(x)$, we have

$$
\begin{equation*}
\int r(x) \exp _{q}(x z) \mathrm{d}_{q} x=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{q^{\frac{k(k+1)}{2}} z^{k+1}}\left(D_{q}^{k} r\right)\left(\frac{x}{q^{k+1}}\right) \exp _{q}(x z) \tag{4.9}
\end{equation*}
$$

Now apply lemma 4.1 with f_{0} an arbitrary polynomial in $x, f_{1}=S_{\ell_{1}}, f_{2}=$ $S_{\ell_{2}}, \ldots, f_{n}=S_{\ell_{n}}, f_{n+1}=\exp _{q}(x z) / z^{n}$, with $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$ as in (3.11). Using (4.9) we have that $F(x)$ can be expressed as

$$
F(x)=R(x) \exp _{q}(x z)
$$

with $R(x)$ some polynomial in x with coefficients depending rationally on z and polynomially on $t=\left(t_{1}, t_{2}, \ldots\right)$. Thus, rewriting $x^{r} \exp _{q}(x z)$ as $D_{q, z}^{r} \exp _{q}(x z)$, we get that

$$
\begin{equation*}
F(x)=R\left(D_{q, z}\right) z^{n}\left(\frac{\exp _{q}(x z)}{z^{n}}\right)=B\left(z, D_{q, z}\right)\left(\frac{\exp _{q}(x z)}{z^{n}}\right) \tag{4.10}
\end{equation*}
$$

where, for notational convenience, we omit the explicit dependence in $t=\left(t_{1}, t_{2}, \ldots\right)$ of the coefficients of B, which we think of as free parameters. Putting (4.10) into (4.2) and using the definition of $\tilde{\Psi}$ (4.8) and (4.3), we obtain

$$
B\left(z, D_{q, z}\right) \tilde{\Psi}=\theta(x) \tilde{\Psi}
$$

with

$$
\begin{equation*}
\theta(x)=\left(\int f_{0}(x) \tau(x, t) \mathrm{d}_{q} x\right)_{\left.\right|_{x q}} \tag{4.11}
\end{equation*}
$$

from which it follows that $\theta(x)$ can be any polynomial in x such that $D_{q} \theta(x)$ is divisible by $\tau(q x, t)$. This concludes the proof of the theorem.

By the same argument as in the case $q=1$ (see for instance [6]) one shows that Sato's formula [15] is still valid:

$$
\tilde{\Psi}=\frac{\tau\left(x, t_{1}-1 / z, t_{2}-1 / 2 z^{2}, t_{3}-1 / 3 z^{3}, \ldots\right)}{\tau\left(x, t_{1}, t_{2}, t_{3}, \ldots\right)} \exp _{q}(x z)
$$

From this formula and the definition of $\tilde{\Psi}(4.8)$, since $\tau(x, t)$ is polynomial in x, we deduce

$$
\begin{equation*}
\tilde{\Psi}=\frac{1}{z^{n}} P\left(\exp _{q}(x z)\right)=\frac{1}{\tau(x, t)} P_{b}\left(z, D_{q, z}\right) \exp _{q}(x z) \tag{4.12}
\end{equation*}
$$

with

$$
P_{b}\left(z, D_{q, z}\right)=\tau\left(D_{q, z}, t_{1}-1 / z, t_{2}-1 / 2 z^{2}, t_{3}-1 / 3 z^{3}, \ldots\right)
$$

Thus any bispectral operator $B\left(z, D_{q, z}\right)$ obtained via theorem 4.2 satisfies

$$
\begin{equation*}
\left(P_{b}^{-1} B P_{b}\right) \exp _{q}(x z)=\theta\left(D_{q, z}\right) \exp _{q}(x z) \tag{4.13}
\end{equation*}
$$

and can therefore be thought of as being obtained as a bispectral Darboux transformation (in the sense of [4] and [13]) of the constant coefficients (in z) q-difference operator $\theta\left(D_{q, z}\right)$.

Note that, if in the proof of theorem 4.2 we make in (4.11) the special choice

$$
f_{0}(x)=\frac{\tau(q x, t)-\tau\left(q^{-1} x, t\right)}{x(q-1)}
$$

leading to $\theta(x)=\tau(x, t) \tau(q x, t)$, we obtain from (4.12) and (4.13) that

$$
\begin{equation*}
P_{b}^{-1} B \tilde{\Psi}=\tau(q x, t) \exp _{q}(x z) \tag{4.14}
\end{equation*}
$$

Recalling that $D_{q}^{N}=Q P$, with Q, P as in (3.13) and (3.14), we deduce that

$$
\begin{aligned}
P_{b}^{-1} B\left(z^{N-n} \exp _{q}(x z)\right) & =P_{b}^{-1} B Q \tilde{\Psi} \\
& =Q \tau(q x, t) \exp _{q}(x z)
\end{aligned}
$$

This last formula and formula (4.14) show that, for the special choice $\theta(x)=$ $\tau(x, t) \tau(q x, t)$, the pseudo-difference operator $Q_{b}=P_{b}^{-1} B$ becomes a q-difference operator and equation (4.12) is nicely completed with

$$
\begin{equation*}
\exp _{q}(x z)=\frac{1}{z^{N-n}} Q \tilde{\Psi}=\frac{1}{\tau(q x, t)} Q_{b} \tilde{\Psi} \tag{4.15}
\end{equation*}
$$

providing us with a beautiful example of a monomial bispectral Darboux transformation in the sense of [4], in the context of q-difference operators.

Example. In order to illustrate theorem 4.2, we give some explicit formulae for the q analogue of the simplest non-trivial KdV example discussed in [7], which corresponds to $\lambda=\left\{\lambda_{1}=2>\lambda_{2}=1>0\right\}$. The corresponding tau-function $\tau(x, t)=S_{2,1}\left(x ; t_{1}, t_{2}, t_{3}\right)$ is written in (3.4). We shall denote by

$$
[\alpha]=\frac{q^{\alpha}-1}{q-1}
$$

the q-analogue of α. In this example, we factorize D_{q}^{4} as

$$
D_{q}^{4}=[Q \tau(q x, t)] \frac{1}{\tau(q x, t) \tau(x, t)}[\tau(x, t) P]
$$

with

$$
\tau(x, t) P=\tau(x, t) D_{q}^{2}-\left(x+t_{1}\right)^{2} D_{q}+\left(x+t_{1}\right)
$$

and

$$
Q \tau(q x, t)=D_{q}^{2} \tau(q x, t)+\left(q^{2} x+t_{1}\right)^{2} D_{q}+q[3]_{q} x+(2 q+1) t_{1} .
$$

This gives

$$
\tau(x, t) P\left(\exp _{q}(x z)\right)=z^{2} P_{b}\left(\exp _{q}(x z)\right)
$$

with

$$
P_{b}=\frac{q}{[3]_{q}} D_{q, z}^{3}+\left(t_{1}-\frac{1}{z}\right) D_{q, z}^{2}+\left(t_{1}-\frac{1}{z}\right)^{2} D_{q, z}+\left(\frac{t_{1}^{3}}{3}-t_{3}-\frac{t_{1}^{2}}{z}+\frac{t_{1}}{z^{2}}\right)
$$

and

$$
Q\left(\tau(q x, t) \exp _{q}(x z)\right)=Q_{b}\left(z^{2} \exp _{q}(x z)\right)
$$

with
$Q_{b}=\frac{q^{4}}{[3]_{q}} D_{q, z}^{3}+\left(t_{1} q^{2}+\frac{1}{z}\right) D_{q, z}^{2}+\left(t_{1}^{2} q+\frac{2 t_{1}}{z}-\frac{1}{z^{2}}\right) D_{q, z}+\left(\frac{t_{1}^{3}}{3}-t_{3}+\frac{t_{1}^{2}}{z}-\frac{t_{1}}{z^{2}}\right)$.
This leads us from (4.12) and (4.15) to a bispectral operator $B_{6}=P_{b} Q_{b}$ of order 6 with $\theta(x)=\tau(x, t) \tau(q x, t)$. By picking $f_{0}=1$ in (4.11) we can also obtain a bispectral operator B_{4} of order 4 such that, according to (4.13),

$$
B_{4}=P_{b} \theta\left(D_{q, z}\right) P_{b}^{-1}
$$

with

$$
\begin{aligned}
\theta(x) & =\left(\int \tau(x, t) \mathrm{d}_{q} x\right)_{\mid x q} \\
& =\frac{q^{5} x^{4}}{[3][4]}+t_{1} \frac{q^{3} x^{3}}{[3]}+t_{1}^{2} \frac{q^{2} x^{2}}{[2]}+\left(\frac{t_{1}^{3}}{3}-t_{3}\right) q x
\end{aligned}
$$

which is the exact q-analogue of the bispectral operator computed in [7].

Acknowledgments

LH thanks F A Grünbaum for his collaboration in $[10,11]$ which aroused his interest in this subject. We also thank E Horozov for explaining to us parts of his recent joint work with B Bakalov and M Yakimov. PI acknowledges the support of a FDS grant at the University of Louvain.

References

[1] Adler M and Moser J 1978 On a class of polynomials connected with the Korteweg-de Vries equation Commun. Math. Phys. 61 1-30
[2] Andrews G E and Askey R 1985 Classical orthogonal polynomials Polynômes Orthogonaux et Applications (Lecture Notes in Mathematics 1171) ed C Brezinski et al (New York: Springer) pp 36-62
[3] Askey R and Wilson J 1985 Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials Mem. Am. Math. Soc. 319
[4] Bakalov B, Horozov E and Yakimov M 1997 Bispectral algebras of commuting ordinary differential operators Preprint q-alg/9602011 to appear in Commun. Math. Phys.
[5] Bakalov B, Horozov E and Yakimov M 1996 General methods for constructing bispectral operators Phys. Lett. A 222 59-66
[6] Dickey L A 1991 Soliton Equations and Hamiltonian Systems (Adv. Ser. Math. Phys. 12) (River Edge, NJ: World Scientific)
[7] Duistermaat J J and Grünbaum F A 1986 Differential equations in the spectral parameter Commun. Math. Phys. 103 177-240
[8] Frenkel E 1996 Deformations of the KdV hierarchy and related soliton equations IMRN (Internat. Mat. Res. Notices) 2 55-76
[9] Frenkel E and Reshetikhin N 1996 Quantum affine algebras and deformations of the Virasoro and W-algebras Commun. Math. Phys. 178 237-64
[10] Grünbaum F A and Haine L 1996 The q-version of a theorem of Bochner J. Comput. Appl. Math. 68 103-14
[11] Grünbaum F A and Haine L 1997 Some functions that generalize the Askey-Wilson polynomials Commun. Math. Phys. 184 173-202
[12] Grünbaum F A and Haine L 1997 Bispectral Darboux transformations: an extension of the Krall polynomials IMRN (Internat. Mat. Res. Notices) 8 359-92
[13] Kasman A and Rothstein M 1997 Bispectral Darboux transformations: the generalized Airy case Physica 102D 159-76
[14] Reach M 1988 Difference equations for N-soliton solutions to KdV Phys. Lett. 129A 101-5
[15] Sato M and Sato Y 1982 Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds Lect. Notes Num. Appl. Anal. 5 259-71
[16] Segal G and Wilson G 1985 Loop groups and equations of KdV type Publ. Math. IHES 61 5-65
[17] Wilson G 1993 Bispectral commutative ordinary differential operators J. Reine Angew. Math. 442 177-204
[18] Zubelli J P 1992 On the polynomial τ-functions for the KP hierarchy and the bispectral property Lett. Math. Phys. 24 41-8

[^0]: \dagger Research Associate of the Belgian National Fund for Scientific Research. E-mail address: haine@agel.ucl.ac.be \ddagger E-mail address: iliev@agel.ucl.ac.be

