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The bispectral property of a q-deformation of the Schur
polynomials and theq-KdV hierarchy
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Abstract. We show that appropriateq-analogues of the Schur polynomials provide rational
solutions of aq-deformation of theN th KdV hierarchy. This allows us to construct explicit
examples of bispectral commutative rings ofq-difference operators.

1. Introduction

Recently, Frenkel [8] has introducedq-deformations of the KdV hierarchy and related
soliton equations. His motivation was to elucidate theq-version of the, by now well known,
connection between the classicalW -algebra ofsl(N) and the bi-Hamiltonian structure of the
N th Korteweg–de Vries (KdV) hierarchy, see also [9]. Incidentally he raised the interesting
open problem of finding explicit solutions of theq-deformed hierarchies.

In [11] Grünbaum and Haine have unearthed another potential area of application ofq-
deformations of soliton equations in the context of an extension of the classical orthogonal
polynomials. Following Andrews and Askey [2], a family of orthogonal polynomials is
called classical when they are eigenfunctions of a second-orderq-difference operator, in
addition to fulfilling the three-term recursion relation which is satisfied by any family of
orthogonal polynomials. Classical orthogonal polynomials thus provide one of the earliest
sources of ‘bispectral situations’. In [11] all doubly infinite tridiagonal matrices were
determined for which some families of eigenfunctions are also eigenfunctions of a second-
orderq-difference operator. The solution is described in terms of an arbitrary solution of
a q-analogue of Gauss’ hypergeometric equation depending on five free parameters and
extends the four-dimensional family of solutions given by the well known Askey–Wilson
polynomials [3]. Some further examples involving higher order recursion relations and
q-difference equations were obtained in [10, 12] by application of the (matrix) Darboux
transformation. In addition some evidence was presented that this ‘difference,q-difference’
bispectral problem is intimately related with someq-deformation of the Toda lattice
hierarchy and its Virasoro symmetries, although the precise connection remains to be worked
out.

The aim of this paper is to initiate the study of a (perhaps simpler) ‘q-difference,q-
difference’ version of the bispectral problem and to connect it with aq-deformation of the
N th KdV hierarchy. Precisely, we show thatq-analogues of the Schur polynomials solve the
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q-deformedN th KdV hierarchy (for an appropriate choice ofN ) and that the corresponding
wave functions are eigenfunctions of a commutative ring ofq-difference operators in the
spectral parameter. This extends to the caseq 6= 1 results of [1, 15, 7, 17, 18]. As in the
caseq = 1, a suitable adaptation of the Darboux transformation will play a crucial role
in establishing these results. Forq = 1, as was first shown in [7], it is well known that
the Schur polynomials which solve the KdV hierarchy (corresponding toN = 2) provide
the complete list of all rank-1 bispectral Schrödinger operators. However, forN > 2,
as shown by Wilson [17], these solutions form a rather small subset among all rank-1
bispectral commutative rings of differential operators. The full set of solutions turns out
to be parametrized by the so called adelic Grassmannian. We defer to a further work, a
thorough study of aq-analogue of Wilson’s adelic Grassmannian.

2. A q-deformation of the N th KdV hierarchy

The q-derivative operatorDq acting on functions ofx is defined by

(Dqf )(x) = f (qx)− f (x)
(q − 1)x

. (2.1)

We shall also use the operator

(Df )(x) = f (qx) (2.2)

and its powers

(Dkf )(x) = f (qkx) k ∈ Z. (2.3)

Our definition of theq-deformedN th KdV hierarchy will be slightly different from the
one given in [8]. It has the advantage that it will obviously converge to the standardN th
KdV hierarchy whenq → 1. We considerq-difference operators of orderN of the form

L = DN
q + (q − 1)x

( N−2∑
j=0

(−1)j (q − 1)j xjuj+2(x)

)
DN−1
q + u2(x)D

N−2
q + · · ·

+uN−1(x)Dq + uN(x) (2.4)

or, equivalently, inD notation:

L = 1

q
N(N−1)

2 (q − 1)NxN
(DN − v1(x)D

N−1+ · · · + (−1)N−1vN−1(x)D + (−1)Nq
N(N−1)

2 ).

(2.5)

TheN th q-deformed KdV hierarchy is defined by the Lax equations

∂L

∂tj
= [(Lj/N)+, L] j = 1, 2, 3, . . . (2.6)

where(Lj/N)+ denotes the positive part (includingD0) of the ‘pseudo-difference’ operator
Lj/N .

Whenq = 1, theN th root ofL is a pseudo-differential operator with coefficients in the
ring C[dk/dxkui ]i=2,...,N;k>0. Whenq 6= 1, one must be careful with the definition ofL1/N .
To explain this, let us try to find

Q := L1/N = 1

(q − 1)x
(D + a0(x)+ a1(x)D

−1+ a2(x)D
−2+ · · ·)
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so thatQN = L. A short computation gives that

QN = 1

q
N(N−1)

2 (q − 1)NxN

[
DN +

( N∑
j=1

qj−1DN−j a0

)
DN−1+ · · ·

+
( N∑
j=1

qk(j−1)DN−j ak−1+ terms involvinga0, a1, . . . , ak−2

)
DN−k + · · ·

]
.

Thus a0(x), a1(x), a2(x), . . . belong to a ringRq,N which can be defined as follows. Let
R
(0)
q,N = C[vi(qkx)]i=1,...,N−1;k∈Z. Adjoin to R(0)q,N all the solutions of

(DN−1+ qDN−2+ q2DN−3+ · · · + qN−1)a0(x) = r(x) (2.7)

for all r(x) ∈ R(0)q,N . This gives us a ringR(1)q,N . Then we adjoin toR(1)q,N all the solutions

of (DN−1 + q2DN−2 + q4DN−3 + · · · + q2(N−1))a1(x) = r(x), for all r(x) ∈ R(1)q,N , etc.

The inductive limit of the ringsR(i)q,N , which are obtained in this way, is the ringRq,N .
For instance the above equations can always be uniquely (formally) solved if we take the
coefficients ofLvi(x) to be formal Laurent series inx. We refer the reader to [8] for details
as well as for a description of the bi-Hamiltonian structure of the deformed hierarchy.

One crucial difference between theq-deformed hierarchy (2.6) and the standard one is
that the firstq-KdV flow is no longer a translation inx. It is given by

∂L

∂t1
=
[
Dq + a0(x)+ 1

(q − 1)x
, L

]
(2.8)

wherea0(x) satisfies (2.7) withr(x) = −v1(x).

3. q-analogues of the Schur polynomials solvingq-KdV

We shall now produce true (non-formal) solutions of (2.6) by means of the Darboux
transformation applied toDN

q .
The q-exponential function is defined by

expq(x) =
∞∑
k=0

(1− q)kxk
(q; q)k (3.1)

where(a; q)k denotes the standardq-shifted factorial

(a; q)0 = 1 (a; q)k = (1− a)(1− aq)(1− aq2) . . . (1− aqk−1) k > 1.

We introduce the elementaryq-Schur polynomialsSk(x; t1, t2, . . .) by the generating
function ∑

k∈Z
Sk(x; t1, t2, . . .)zk = expq(xz) exp

( ∞∑
k=1

tkz
k

)
. (3.2)

Thus

Sk = 0 for k < 0 S0 = 1 S1 = x + t1
S2 = q − 1

q2− 1
x2+ t1x + t

2
1

2
+ t2, etc.

To each partitionλ = {λ1 > λ2 > · · · > λn > 0} formed with a non-increasing finite
sequence of positive integers, we associateq-Schur polynomialsSλ(x; t1, t2, . . .) via the
usualn× n determinant

Sλ(x; t1, t2, . . .) = det(Sλi+j−i (x; t1, t2, . . .)). (3.3)
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For instance

S2,1(x; t1, t2, t3) = q q − 1

q3− 1
x3+ t1x2+ t21x +

t31

3
− t3. (3.4)

By definition, whenq → 1, these polynomials depend only onx + t1 and we can put
x = 0, which agrees with the standard definition of the Schur polynomials. Denoting for
a moment the standard Schur polynomials bySλ(t1, t2, . . .) and their deformed version by
Sλ,q(x; t1, t2, . . .), since

expq(xz) = exp

( ∞∑
k=1

(1− q)k
k(1− qk)x

kzk
)

(3.5)

we obtain immediately that

Sλ,q(x; t1, t2, t3, . . .) = Sλ
(
t1+ x, t2+ (1− q)2

2(1− q2)
x2, t3+ (1− q)3

3(1− q3)
x3, . . .

)
(3.6)

an observation that we shall exploit soon !
We define theq-Wronskian of functionsf1, . . . , fn of x by

Wq(f1, . . . , fn) = det(Di−1
q fj )16i,j6n. (3.7)

Whenf1, . . . , fn are also functions oft1 we shall use the notation

Wt1(f1, . . . , fn) = det

((
∂

∂t1

)i−1

fj

)
16i,j6n

(3.8)

to denote the usual Wronskian built with∂/∂t1. It is clear from the definition (3.2) of the
elementary Schur polynomials that

DqSk = ∂

∂t1
Sk = Sk−1 (3.9)

and thus, for any partitionλ = {λ1 > λ2 > · · · > λn > 0}, we have that

Sλ = Wq(S`1, S`2, . . . , S`n) = Wt1(S`1, S`2, . . . , S`n) (3.10)

with

`1 = λn < `2 = λn−1+ 1< `3 = λn−2+ 2< · · · < `n = λ1+ n− 1. (3.11)

Let {k1, . . . , kr} = {0, 1, 2, . . . , `n}\{`1, `2, . . . , `n}, with r = `n + 1− n. Since the
functionsS0, S1, S2, . . . , S`n span the kernel ofD`n+1

q , we can factorize

D`n+1
q = QP (3.12)

as a product of two monicq-difference operatorsP = Dn
q + (lower) andQ = Dr

q+ (lower),
with

Pf = Wq(S`1, S`2, . . . , S`n , f )

Wq(S`1, S`2, . . . , S`n)
(3.13)

and

Qf = Wq(P (Sk1), P (Sk2), . . . , P (Skr ), f )

Wq(P (Sk1), P (Sk2), . . . , P (Skr ))
(3.14)

wheref denotes an arbitrary function ofx. In the following, we shall often use the notation

τ(x, t) := Wq(S`1, S`2, . . . , S`n) (3.15)

with t = (t1, t2, . . .), anticipating the result that this Wronskian is indeed a ‘tau-function’ of
the q-deformedN th KdV hierarchy, for an appropriate choice ofN . We can now state
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Theorem 3.1.For any partitionλ = {λ1 > λ2 > · · · > λn > 0}, let N = λ1 + n and letP ,
Q be theq-difference operators defined in (3.13) and (3.14) so thatDN

q = QP . Then, the
operator

L = PQ (3.16)

solves theq-deformedN th KdV hierarchy (2.6).

Proof. Writing LP = PDN
q in ‘D-notation’ (2.3), one sees immediately that the coefficient

of D0 in L has to be as in (2.5) or, equivalently, thatL has the form given in (2.4). Since
DN
q expq(xz) = zN expq(xz), the ‘wave function’

9 = 1

zn
P

(
expq(xz) exp

( ∞∑
k=1

tkz
k

))
(3.17)

obviously satisfies

L9 = zN9. (3.18)

Let us denote by9q=1(t1, t2, . . .) the wave function of the standardN th KdV hierarchy
corresponding to the usual Schur polynomialSλ(t1, t2, . . .) with q = 1. It is given by the
same formula as in (3.17) withx = 0, except that in the definition (3.13) ofP , q is replaced
by t1 andf is a function oft1, with Wt1 the usual Wronskian (3.8). This remark combined
with (3.5), (3.6), (3.9) and the definition (3.17) of9 shows that

9 = 9q=1

(
t1+ x, t2+ (1− q)2

2(1− q2)
x2, t3+ (1− q)3

3(1− q3)
x3, . . .

)
.

Thus, by the classical result that the Schur polynomials withq = 1 are tau-functions of the
KP hierarchy [15] (see also [16]), there exist differential operatorsAj(∂/∂t1) in ∂/∂t1 so
that

∂9

∂tj
= Aj(∂/∂t1)9 j = 2, 3, . . . . (3.19)

If we could establish that
∂9

∂t1
=
(
Dq + ∂

∂t1
log

τ(qx, t)

τ (x, t)

)
9 (3.20)

with τ(x, t) as in (3.15), we could re-express the∂/∂t1-derivatives in (3.19) in terms of
Dq-derivatives, proving thus the existence ofq-difference operatorsBj(Dq) so that

∂9

∂tj
= Bj(Dq)9 j = 2, 3, . . . . (3.21)

It then follows immediately from (3.18), (3.20) and (3.21), using standard arguments, that
L solves theq-deformedN th KdV hierarchy (2.6).

It remains to establish (3.20). Substituting (3.2) into the definition (3.17) of9 gives

9 =
∞∑
k=0

zk−n
Wq(S`1, S`2, . . . , S`n , Sk)

Wq(S`1, S`2, . . . , S`n)
(3.22)

with `1, `2, . . . , `n as in (3.11). Let us denote byWλ,k(x, t) the Wronskian
Wq(S`1, S`2, . . . , S`n , Sk) = Wt1(S`1, S`2, . . . , S`n , Sk). Recalling the definition ofτ(x, t)
in (3.15), after plugging (3.22) into (3.20), the validity of this identity amounts to checking
that

Wq(τ(x, t),Wλ,k(x, t)) = Wt1(τ (qx, t),Wλ,k(x, t)) (3.23)
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with Wq andWt1 as in (3.7) and (3.8). One can think of this identity as an identity between
two differential operators in∂/∂t1 of ordern + 1 acting on the polynomialsSk. Thus, if
we can show that the coefficients of(∂/∂t1)n+1 and (∂/∂t1)n are the same on both sides
of (3.23), since the identity is automatically satisfied fork = `1, `2, . . . , `n, it will be
identically satisfied. One computes easily that both the left-hand side and the right-hand
side of (3.23), when expanded as differential operators in∂/∂t1 acting onSk, are given by

τ(qx, t)τ (x, t)

(
∂

∂t1

)n+1

Sk − τ(x, t) ∂
∂t1
τ(qx, t)

(
∂

∂t1

)n
Sk + (lower order terms)

which establishes (3.23) and concludes the proof of the theorem. �

As in the caseq = 1, for special choices of the partitionλ, it may happen thatL in
(3.16) is a power of someq-difference operator. For instance, the well known ‘staircase
choice’ λ = {λ1 = n > λ2 = n − 1 > λ3 = n − 2 > · · · > λn = 1}, corresponding to
`1 = 1< `2 = 3< `3 = 5< · · · < `n = 2n− 1 in (3.11), leads to an operatorL such that
L = L̃n, with

L̃ = D2
q + (q − 1)xu(x, t)Dq + u(x, t) (3.24)

a solution of theq-analogue of the KdV hierarchy itself, corresponding toN = 2. Moreover,
the celebrated formula expressingu(x, t) in terms of the tau-function admits the following
q-analogue

u(x, t) = Dq

∂

∂t1
logτ(x, t)τ (qx, t) (3.25)

with τ(x, t) = Sn,n−1,n−2,...,1(x; t1, t2, . . .) and Dq the standardq-derivative operator
introduced in (2.1). To see this, observe that since

D2
qS`k = D2

qS2k−1 = S2k−3 = S`k−1 16 k 6 n

by the definition ofP (3.13), we have that kerP ⊂ kerPD2
q and thus

PD2
q = L̃P (3.26)

with L̃ a second-orderq-difference operator as in (3.24). Hence,

L̃n = PD2n
q P

−1 = P(QP)P−1 = PQ = L.

To check formula (3.25), we equate the coefficients ofDn+1
q in (3.26), which gives

b(x) = (q − 1)xu(x)+ b(q2x) (3.27)

with b(x) the coefficient ofDn−1
q in P . Now, from the definition ofP (3.13) and by using

(3.9), (3.10) and (3.15), one easily shows that

b(x) = − ∂

∂t1
Wt1(S`1, . . . , S`n)/Wq(S`1, . . . , S`n)

= − ∂

∂t1
logτ(x, t)

which, using (3.27), gives (3.25).
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4. Bispectral property of the q-Schur polynomials

Our proof of the bispectral property of theq-Schur polynomials will be based on aq-version
of a very useful lemma due to Reach [14]. This lemma was used in [18] to prove that the
classical Schur polynomials are bispectral. Compared with the more recent developments
on the bispectral problem in [4, 5, 13], based on Wilson’s idea of a bispectral involution
[17], this lemma has the advantage of producingexplicit formulae for a whole commutative
ring of bispectral operators. At the end of the section, we shall connect this method with
the more recent idea of the bispectral involution.

Lemma 4.1.Let f0, f1, . . . , fn+1 be functions ofx. Define

F(x) =
n+1∑
k=1

(−1)n+1+kfk(x)
∫
f0(x)Wq(f1, . . . , f̂k, . . . , fn+1) dqx. (4.1)

Then

Wq(f1, . . . , fn, F ) = θ(x)Wq(f1, . . . , fn+1) (4.2)

with

θ(x) =
(∫

f0(x)Wq(f1, . . . , fn) dqx

)
|xq
. (4.3)

Here
∫

dqx denotes the standardq-integral.

Proof. Expanding with respect to the last row the identity∣∣∣∣∣∣∣∣∣∣

f1 f2 · · · fn+1

Dqf1 Dqf2 · · · Dqfn+1
...

...
...

Dn−1
q f1 Dn−1

q f2 · · · Dn−1
q fn+1

f1(q
sx) f2(q

sx) · · · fn+1(q
sx)

∣∣∣∣∣∣∣∣∣∣
= 0

for s = 0, 1, . . . , n− 1, gives

n+1∑
k=1

(−1)n+1+kfk(qsx)Wq(f1, . . . , f̂k, . . . , fn+1) = 0. (4.4)

We now computeDqF,D
2
qF, . . .. We have

DqF =
n+1∑
k=1

(−1)n+1+kfk(qx)f0(x)Wq(f1, . . . , f̂k, . . . , fn+1)

+
n+1∑
k=1

(−1)n+1+kDqfk

∫
f0(x)Wq(f1, . . . , f̂k, . . . , fn+1) dqx.

The first term is zero by (4.4) withs = 1. Continuing the process inductively and taking
appropriate linear combinations of the identities (4.4), we get that

Dj
qF =

n+1∑
k=1

(−1)n+1+kDj
qfk

∫
f0(x)Wq(f1, . . . , f̂k, . . . , fn+1) dqx

for j = 1, 2, . . . , n− 1. (4.5)
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This gives then that

Dn
qF =

n+1∑
k=1

(−1)n+1+k(Dn−1
q fk)(qx)f0(x)Wq(f1, . . . , f̂k, . . . , fn+1)

+
n+1∑
k=1

(−1)n+1+kDn
qfk

∫
f0(x)Wq(f1, . . . , f̂k, . . . , fn+1) dqx. (4.6)

Note that now (and this is the main difference with the caseq = 1) the first term is non-zero,
but it would be zero if instead of(Dn−1

q fk)(qx) we had(Dn−1
q fk)(x). Thus we can rewrite

Dn
qF as

Dn
qF = (q − 1)x

n+1∑
k=1

(−1)n+1+k(Dn
qfk)(x)f0(x)Wq(f1, . . . , f̂k, . . . , fn+1)

+same second term as in (4.6)

= (q − 1)xf0(x)Wq(f1, . . . , fn+1)

+
n+1∑
k=1

(−1)n+1+kDn
qfk

∫
f0(x)Wq(f1, . . . , f̂k, . . . , fn+1) dqx. (4.7)

Putting (4.1), (4.5) and (4.7) intoWq(f1, . . . , fn, F ), most of the terms disappear by
column elimination and we obtain

Wq(f1, . . . , fn, F ) = Wq(f1, . . . , fn+1)

[ ∫
f0(x)Wq(f1, . . . , fn) dqx

+(q − 1)xf0(x)Wq(f1, . . . , fn)

]
= θ(x)Wq(f1, . . . , fn+1)

with θ(x) as in (4.3), which proves the lemma. �

The next theorem expresses the bispectral property of theq-analogues of the Schur
polynomials.

Theorem 4.2.Let λ = {λ1 > λ2 > · · · > λn > 0} be a partition and letτ(x, t) =
Sλ(x; t1, t2, . . .) be the associatedq-Schur polynomial. Then the corresponding solution
L of the q-deformedN th KdV hierarchy built in theorem 3.1 is bispectral. Precisely, the
function

9̃ = P
(

expq(xz)

zn

)
= exp

(
−
∞∑
k=1

tkz
k

)
9 (4.8)

with P and9 as in (3.13) and (3.17), satisfies

L9̃ = zN9̃
and, for any polynomialθ(x) such thatDqθ(x) is divisible by τ(qx, t), there exists a
q-difference operator inz, B(z,Dq,z) independent ofx such that

B(z,Dq,z)9̃ = θ(x)9̃
with Dq,z the standardq-derivative operator acting on functions ofz defined by
(Dq,zf )(z) = (f (qz)− f (z))/(q − 1)z.
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Proof. By q-integration by parts, for any polynomialr(x), we have∫
r(x) expq(xz) dqx =

∞∑
k=0

(−1)k

q
k(k+1)

2 zk+1
(Dk

qr)

(
x

qk+1

)
expq(xz). (4.9)

Now apply lemma 4.1 withf0 an arbitrary polynomial inx, f1 = S`1, f2 =
S`2, . . . , fn = S`n, fn+1 = expq(xz)/z

n, with `1, `2, . . . , `n as in (3.11). Using (4.9) we
have thatF(x) can be expressed as

F(x) = R(x) expq(xz)

with R(x) some polynomial inx with coefficients depending rationally onz and
polynomially on t = (t1, t2, . . .). Thus, rewritingxr expq(xz) asDr

q,z expq(xz), we get
that

F(x) = R(Dq,z)z
n

(
expq(xz)

zn

)
= B(z,Dq,z)

(
expq(xz)

zn

)
(4.10)

where, for notational convenience, we omit the explicit dependence int = (t1, t2, . . .) of
the coefficients ofB, which we think of as free parameters. Putting (4.10) into (4.2) and
using the definition of9̃ (4.8) and (4.3), we obtain

B(z,Dq,z)9̃ = θ(x)9̃
with

θ(x) =
(∫

f0(x)τ (x, t)dqx

)
|xq

(4.11)

from which it follows thatθ(x) can be any polynomial inx such thatDqθ(x) is divisible
by τ(qx, t). This concludes the proof of the theorem. �

By the same argument as in the caseq = 1 (see for instance [6]) one shows that Sato’s
formula [15] is still valid:

9̃ = τ(x, t1− 1/z, t2− 1/2z2, t3− 1/3z3, . . .)

τ (x, t1, t2, t3, . . .)
expq(xz).

From this formula and the definition of̃9 (4.8), sinceτ(x, t) is polynomial inx, we deduce

9̃ = 1

zn
P (expq(xz)) =

1

τ(x, t)
Pb(z,Dq,z) expq(xz) (4.12)

with

Pb(z,Dq,z) = τ(Dq,z, t1− 1/z, t2− 1/2z2, t3− 1/3z3, . . .).

Thus any bispectral operatorB(z,Dq,z) obtained via theorem 4.2 satisfies

(P−1
b BPb) expq(xz) = θ(Dq,z) expq(xz) (4.13)

and can therefore be thought of as being obtained as a bispectral Darboux transformation (in
the sense of [4] and [13]) of the constant coefficients (inz) q-difference operatorθ(Dq,z).

Note that, if in the proof of theorem 4.2 we make in (4.11) the special choice

f0(x) = τ(qx, t)− τ(q−1x, t)

x(q − 1)

leading toθ(x) = τ(x, t)τ (qx, t), we obtain from (4.12) and (4.13) that

P−1
b B9̃ = τ(qx, t)expq(xz). (4.14)



7226 L Haine and P Iliev

Recalling thatDN
q = QP , with Q, P as in (3.13) and (3.14), we deduce that

P−1
b B(zN−n expq(xz))= P−1

b BQ9̃

= Qτ(qx, t)expq(xz).

This last formula and formula (4.14) show that, for the special choiceθ(x) =
τ(x, t)τ (qx, t), the pseudo-difference operatorQb = P−1

b B becomes aq-difference operator
and equation (4.12) is nicely completed with

expq(xz) =
1

zN−n
Q9̃ = 1

τ(qx, t)
Qb9̃ (4.15)

providing us with a beautiful example of a monomial bispectral Darboux transformation in
the sense of [4], in the context ofq-difference operators.

Example. In order to illustrate theorem 4.2, we give some explicit formulae for theq-
analogue of the simplest non-trivial KdV example discussed in [7], which corresponds to
λ = {λ1 = 2 > λ2 = 1 > 0}. The corresponding tau-functionτ(x, t) = S2,1(x; t1, t2, t3) is
written in (3.4). We shall denote by

[α] = qα − 1

q − 1

the q-analogue ofα. In this example, we factorizeD4
q as

D4
q = [Qτ(qx, t)]

1

τ(qx, t)τ (x, t)
[τ(x, t)P ]

with

τ(x, t)P = τ(x, t)D2
q − (x + t1)2Dq + (x + t1)

and

Qτ(qx, t) = D2
qτ (qx, t)+ (q2x + t1)2Dq + q[3]qx + (2q + 1)t1.

This gives

τ(x, t)P (expq(xz)) = z2Pb(expq(xz))

with

Pb = q

[3]q
D3
q,z +

(
t1− 1

z

)
D2
q,z +

(
t1− 1

z

)2

Dq,z +
(
t31

3
− t3− t

2
1

z
+ t1

z2

)
and

Q(τ(qx, t)expq(xz)) = Qb(z
2 expq(xz))

with

Qb = q4

[3]q
D3
q,z +

(
t1q

2+ 1

z

)
D2
q,z +

(
t21q +

2t1
z
− 1

z2

)
Dq,z +

(
t31

3
− t3+ t

2
1

z
− t1

z2

)
.

This leads us from (4.12) and (4.15) to a bispectral operatorB6 = PbQb of order 6 with
θ(x) = τ(x, t)τ (qx, t). By pickingf0 = 1 in (4.11) we can also obtain a bispectral operator
B4 of order 4 such that, according to (4.13),

B4 = Pbθ(Dq,z)P
−1
b
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with

θ(x) =
(∫

τ(x, t)dqx

)
|xq

= q5x4

[3][4]
+ t1q

3x3

[3]
+ t21

q2x2

[2]
+
(
t31

3
− t3

)
qx

which is the exactq-analogue of the bispectral operator computed in [7].

Acknowledgments

LH thanks F A Gr̈unbaum for his collaboration in [10, 11] which aroused his interest in this
subject. We also thank E Horozov for explaining to us parts of his recent joint work with
B Bakalov and M Yakimov. PI acknowledges the support of a FDS grant at the University
of Louvain.

References

[1] Adler M and Moser J 1978 On a class of polynomials connected with the Korteweg–de Vries equation
Commun. Math. Phys.61 1–30

[2] Andrews G E and Askey R 1985 Classical orthogonal polynomialsPolynômes Orthogonaux et Applications
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